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Abstract

The reliability of a scaled score can be computed by use of item response theory. Estimated

reliability can be obtained even if the item response model selected is not valid.
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Reliability of scaled scores can be determined by use of item response theory (Kolen, Zeng,

& Hanson, 1996). This approach involves some risk, for the item response model employed may

well not hold. An alternative approach based on item response theory does not assume that the

model is true (Haberman, 2007). If the model is true, then the two approaches should give very

similar results in large samples, so that an indication of the impact of model error is provided.

In Section 1, conventional computation of reliability of a scaled score is reviewed. In Section 2,

the proposed method of reliability computation is considered. In Section 3, some examples of

computations are provided for operational tests. Implications are explored in Section 4.

Throughout the paper, it is assumed that examinee responses Xij , 1 ≤ j ≤ q, 1 ≤ i ≤ n, are

available, where examinee i, 1 ≤ i ≤ n, has response Xij to item j, 1 ≤ j ≤ q. It is assumed

that q is at least 2. The response vectors Xi with coordinates Xij , 1 ≤ j ≤ q, are assumed to be

independent and identically distributed. Each response Xij is in a finite set Aj of real values,

where Aj has at least two elements. The possible values of Xi may be denoted by A. In many

applications, Aj = {0, 1}, Xij = 1 if the response is correct, and Xij = 0, otherwise. In formula

scoring with aj multiple choices, one might have Aj = {−1/((aj − 1), 0, 1)} with Xij = 1 for

a correct response, Xij = 0 for an omitted response, and Xij = −1/(aj − 1) for an incorrect

response. For a q-dimensional vector y, let Σ(y) be the sum of the coordinates of y. Then the

sum Si = Σ(Xi) of the Xij , 1 ≤ j ≤ q, is the raw score for examinee i. The finite set of possible

raw scores is denoted by Σ(A). To any possible raw score s in Σ(A) corresponds a real scaled

score U(s). A one-dimensional item-response model is considered for the responses Xi, 1 ≤ i ≤ n.

Under the model, it is assumed that for some K-dimensional vector β in a set B with a nonempty

interior and for some family of probability distributions P (γ), γ in B, any q-dimensional vector

x in A with coordinate xj , 1 ≤ j ≤ q, the probability p(x) that Xi = x is the expected value

p∗(x;β) of

p∗(x|θ;β) =
q∏

j=1

pj(xj |θ;β),

where pj(xj |θ;β) > 0, the sum of the pj(x|θ;β), x in Aj , is equal to 1, and θ has a probability

distribution P (β). Thus for a random variable θi, the Xij , 1 ≤ j ≤ q, are conditionally

independent given θi, θi has distribution P (β), and the conditional probability that Xij = xj

given θi = θ is pj(xj |θ;β). If defined, the expectation of a real function g(θi) of θi is denoted by

E(g(θ);β). It is assumed that pj(xj |θ;β) is continuous in both θ and β. The probability pS(s), s
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in Σ(A), that the raw score Si = s is the sum of the probabilities p(x) for response combinations x

in A such that the sum Σ(x) = s. Thus the model assumes that the probability pS(s) = pS∗(s;β),

the corresponding sum of the probabilities p∗(x;β) for response combinations x in A such that

the sum Σ(x) = s. Computation of pS∗(s;β) is not generally difficult if appropriate recursive

algorithms are used (Kolen et al., 1996).

Even if the model does not hold, it is assumed that a unique β∗ exists that minimizes the

information measure E(− log p∗(X1,β∗)) over B (Haberman, 2007). If the model does hold, then

β∗ = β. The parameter β∗ can be regarded as the value in B that leads to p∗(x;β∗) that best

approximate p(x) for x in A.

In practice, β∗ is estimated from the Xi by maximum likelihood. The maximum-likelihood

estimate of β is denoted by β̂. It is assumed that the customary results hold that β̂ converges to

β∗ with probability 1 and P (β̂∗) converges weakly to P (β∗) with probability 1. It then follows

that E(g(θ); β̂) converges with probability 1 to E(g(θ);β) if g is bounded and continuous.

1 Computation of Reliability of the Scaled Score

If the model holds, then the scaled score Ui = U(Si) has conditional variance given θi = θ

(conditional variance of measurement at θ) of

σ2(U |θ;β) =
∑

s∈Σ(A)

[U(s)− µ(U |θ;β)]2pS∗(s|θ;β),

where the conditional scale score mean given θi = θ is

µ(U |θ;β) =
∑

s∈Σ(A)

U(s)pS∗(s|θ;β).

The expected conditional variance given θi = θ (variance of measurement) is then E(σ2(U |θ;β);β).

The conditional standard error of measurement is the square root of the conditional variance of

measurement. If the expected value of µ(U |θi;β) is denoted by

µ(U ;β) = E(µ(U |θ;β);β),

then the variance of µ(U |θi;β) is

σ2(µ(U |θ;β);β) = E([µ(U |θ;β)− µ(U ;β)]2;β).
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Thus the reliability of the scaled score is

ρ2(U ;β) =
σ2(µ(U |θ;β);β)

σ2(U |θ;β) + σ2(µ(U |θ;β);β)

(Kolen et al., 1996). Because the model is assumed to hold, µ(U ;β) is the expected scaled

score E(Ui), and the variance σ2(Ui) of the scaled score is σ2(U |θ;β) + σ2(µ(U |θ;β);β). The

maximum-likelihood estimate E(σ2(U |θ; β̂); β̂) of the variance of measurement converges with

probability 1 to the variance of measurement E(σ2(U |θ;β);β). The maximum-likelihood estimate

ρ2(U ; β̂) of the reliability converges to the actual reliability ρ2(U ;β) with probability 1. If P (β)

is the distribution of a polytomous random variable, then the required expectations are readily

computed. If P (β) is the standard normal distribution, as is quite common in item response

theory, then Gauss-Hermite quadrature may normally be employed to find expectations.

At ETS, computation of reliability of a scaled score is accomplished by a much older and

much cruder approach (Dorans, 1984) based on local linear approximations of scaled scores by raw

scores and based on approximation of the distribution of true scores by the empirical distribution

of raw scores.

2 Alternative Computation of Reliability of the Scaled Score

An alternative approach to computation of the scaled score does not assume that the model

is correct. In this approach (Haberman, 2007), a random variable θi∗ has distribution P (β), and a

random vector Xi∗ with the same possible values as Xi has conditional probability p(x|θ;β) that

Xi∗ = x given θi∗ = θ. A random variable θi then exists such that the conditional distribution of

θi given Xi is the same as the conditional distribution of θi∗ given Xi∗. No assumptions are made

concerning the distribution of Xi other than that each probability p(Xi) is positive. Let p denote

the function on A with value p(x) at x in A. If g is a real function on the real line and if the

expected value E(g(θ);β∗) of g(θi∗) is defined, then the expected value of g(θi) is the expected

value

E∗(g(θ);p,β∗) = E(c(θ;p,β∗)g(θ);β∗)

of the product c(θi∗;p,β∗)g(θi∗). Here the multiplier

c(θ;p,β∗) =
∑
x∈A

d(θ;x,p,β∗),
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and the summand

d(θ;x,p,β∗) =
p(x)p∗(x|θ;β∗)

p∗(x;β∗)
.

The conditional probability that Xi = x given θi = θ is then d(θ;x,p,β∗)/c(θ;p,β∗). If the model

is valid, then the summand d(θ;p,x;β∗) is the conditional probability p∗(x|θ;β) that Xi = x

given θi = θ, and the multiplier c(θ;p,β∗) is 1. Thus the expected value E∗(g(θ);p,β∗) of g(θi) is

the same as the expected value of g(θi∗).

The scaled score Ui has conditional variance given θi = θ (conditional variance of measurement

at θ) of

σ2
∗(U |θ;p,β∗) = [c(θ;p,β∗)]

−1
∑
x∈A

[U(Σ(x))− µ∗(U |θ;p,β∗)]
2d(θ;x,p,β),

where the conditional scale score mean given θi = θ is

µ∗(U |θ;β∗) =
∑
x∈A

U(Σ(x))d(θ|x,p,β).

The expected conditional variance given θi = θ (variance of measurement) is then

E∗(σ2(U |θ;p,β∗);p,β∗). The square root of the conditional variance of measurement is the

conditional standard error of measurement. The expected value of µ∗(U |θi;β∗) is the expected

value

E(U ;p) =
∑
x∈A

U(Σ(x))p(x)

of Ui, so that the variance of µ∗(U |θ;p,β) is

σ2
∗(µ∗(U |θ;p,β∗);p,β∗) = E∗([µ∗(U |θ;p,β∗)− E(U ;p)]2;p,β∗).

Let

σ2(U ;p) =
∑
x∈A

[U(Σ(x))− E(U ;p)]2p(x)

denote the variance of Ui. Based on the new variable θi, the reliability of the scaled score is

ρ2
∗(U ;p,β∗) =

σ2
∗(µ∗(U |θ;p,β∗);p,β∗)

σ2(U ;p)
.

If p̄ is the fraction of examinees i, 1 ≤ i ≤ n, with Xi = x and if p̄ is the function on A

with value p̄(x) for x in A, then the estimated variance σ2(U ; p̄) converges with probability 1

to the variance σ2(U ;p) of Ui. The estimated variance of measurement E∗(σ2(U |θ; p̄, β̂; p̄, β̂))

converges with probability 1 to the variance of measurement E∗(σ2(U |θ;p,β∗);p,β∗). It follows
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that the estimated reliability ρ2
∗(U ; p̄, β̂) of the scaled score converges to the the actual reliability

ρ2
∗(U,p,β∗) with probability 1. If the model holds, then ρ2

∗(U, p̄, β̂) and ρ2(U, β̂) both converge to

the same value.

In almost any real test, the vast preponderance of the p̄(x) are 0, for the number of possible

combinations of responses is far larger than the sample size. For any real function h on A,

the average
∑

x∈A h(x) is equal to n−1
∑n

i=1 h(Xi). In evaluation of variances and reliability

coefficients, it is helpful to observe that

c(θ; p̄, β̂) = n−1
n∑

i=1

p∗(Xi|θ; β̂)

p∗(Xi; β̂)
,

σ2
∗(U |θ; p̄; p̄β̂) = [c(θ; p̄, β̂)]−1n−1

n∑
i=1

[Ui − µ∗(U |θ; p̄, β̂)]2
p∗(Xi|θ; β̂)

p∗(Xi; β̂)
,

µ∗(U |θ;β∗) = n−1
n∑

i=1

Ui
p∗(Xi|θ; β̂)

p∗(Xi; β̂)
,

E(U ; p̄) = n−1
n∑

i=1

Ui,

and

σ2(U ; p̄) = n−1
n∑

i=1

[Ui − E(U ; p̄)]2.

3 Examples

To illustrate results, reliability computations were made for the scaled scores reported for

two forms associated with an ETS assessment. The first form, Form 1, involved about 2,700

examinees and the second form, Form 2, involved about 3,000 examinees. For each form, two

sections, Section A and Section B, are considered. For each section, the responses of the examinee

for that section are used to construct a raw score total for the section, and the raw score is then

converted to a reported scale score for the section. Two approaches were considered. In the first

approach, a two-parameter logistic (2PL) model was employed for dichotomous responses with

possible values 0 or 1, and a generalized partial credit model was used for polytomous responses.

Because both Section A and Section B involved item sets, a second approach was considered in

which a generalized partial credit model was applied to the raw score subtotals for each item

set. In addition to the IRT analysis, Cronbach α statistics were computed for each total raw

score for each section. Two methods are were to compute the Cronbach α. The first method
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based computations on individual item responses. The second approach based computations on

raw subtotals for each set of items. Results are provided in Tables 1, 2, and 3. For comparison,

note that output from statistical analysis performed during equating of Form 2 yielded reliability

estimates of 0.871 for the scaled score for Section A on Form 2 and a reliability estimate of 0.888

for the raw score for Section A. For Form 2, the estimated reliability for Section B was 0.870 for

the scaled score and 0.872 for the raw score. As previously indicated, these computations are

based in Dorans (1984).

Table 1
Reliability Estimates

Estimate Score Basis Form 1 Form 2
Section A Section B Section A Section B

Model assumed Scale Items 0.907 0.896 0.892 0.876
Model not assumed Scale Items 0.904 0.896 0.874 0.862
Model assumed Raw Items 0.909 0.898 0.892 0.882
Model not assumed Raw Items 0.905 0.898 0.887 0.871
Cronbach α Raw Items 0.893 0.892 0.873 0.863
Model assumed Scale Sets 0.880 0.877 0.863 0.858
Model not assumed Scale Sets 0.880 0.879 0.859 0.849
Model assumed Raw Sets 0.882 0.879 0.869 0.865
Model not assumed Raw Sets 0.881 0.881 0.869 0.857
Cronbach α Raw Sets 0.878 0.870 0.865 0.839

Table 2
Standard Errors of Measurement

Estimate Score Basis Form 1 Form 2
Section A Section B Section A Section B

Model assumed Scale Items 2.156 2.239 2.191 2.179
Model not assumed Scale Items 2.165 2.241 2.214 2.207
Model assumed Raw Items 2.763 2.349 2.874 2.041
Model not assumed Raw Items 2.771 2.344 2.881 2.040
Cronbach α Raw Items 2.944 2.413 3.049 2.108
Model assumed Scale Sets 2.423 2.416 2.338 2.287
Model not assumed Scale Sets 2.420 2.415 2.336 2.310
Model assumed Raw Sets 3.105 2.539 3.097 2.144
Model not assumed Raw Sets 3.100 2.531 3.092 2.147
Cronbach α Raw Sets 3.142 2.653 3.142 2.285
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Table 3
Standard Deviations

Estimate Score Basis Form 1 Form 2
Section A Section B Section A Section B

Model assumed Scale Items 7.070 6.929 6.659 6.179
model not assumed Scale Items 6.985 6.950 6.229 5.937
Model assumed Raw Items 9.145 7.352 8.752 5.951
Model not assumed Raw Items 9.003 7.349 8.554 5.686
Cronbach α Raw Items 9.003 7.349 8.554 5.686
Model assumed Scale Sets 7.007 6.894 6.613 6.072
Model not assumed Scale Sets 6.985 6.950 6.229 5.937
Model assumed Raw Sets 9.037 7.302 8.546 5.829
Model not assumed Raw Sets 9.003 7.349 8.554 5.686
Cronbach α Raw Sets 9.003 7.349 8.554 5.686

The various estimates are not dramatically different, but differences are still notable. The

key issue appears to be the treatment of item sets. Given the same treatment of sets, estimated

standard errors of measurement are quite similar for both IRT approaches. As should be

expected, the Cronbach α statistics give larger estimated standard errors of measurement than

do the corresponding IRT procedures. The IRT estimates are from 1 to 6% smaller. The issue

of item sets is somewhat more notable. Set-based estimates are from 3 to 12% larger than are

the corresponding item-based estimates. The estimated standard deviations of scores for the

method of section 1 in which the model is assumed to hold are often quite close to those for the

method of section 2 in which the model is not assumed to hold, but differences can exist. For

example, consider the scaled score for Section B of Form 2 for the item-based estimate. The

estimate that assumes model validity is about 7% larger than is the estimate that does not assume

model validity. The reliability estimates are rather similar for different methods that provide the

same treatment or lack of treatment of item sets. Conditional on method of estimate, including

treatment of item sets, the reliability results for scale scores and raw scores are rather similar

despite some nonlinearity of the raw-to-scale conversion in Form 2 and despite use of rounded scale

scores. Effects of item sets are of some concern, especially if one considers percentage changes in

terms of differences from 1. For example, in the case of the Cronbach α, for Section B of Form 2,

the item-based result is about 15% closer to 1 than is the set-based result.
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4 Conclusions

It is quite feasible to estimate reliability of scaled scores with far fewer approximations than

are currently used in ETS estimation procedures. At least for the cases examined, the effect of

more accurate estimation is not dramatic but not negligible.

The approach to item sets in the analysis is not necessarily the best one. Especially in

Section A, in which item sets are quite large, it may be more appropriate to apply restrictive

models on the parameters in the generalized partial credit model to overcome concerns about

the small numbers of examinees with certain extreme raw subtotals. In addition, it is possible

to consider testlet models for the treatment of item sets. The latter choice was avoided in this

investigation due to the somewhat higher computational labor involved. Nonetheless, the role of

testlet models does warrant study.

The approach that does not assume model validity is not a perfect solution to invalid models,

although comparison with the results that assume and do not assume validity can indicate

model deficiencies. Nonetheless, analysis of item-based models was still not entirely successful at

revealing set effects. Thus it is not realistic to expect that analysis that does not assume a valid

model will inevitably lead to a satisfactory treatment of reliability.

8



References

Dorans, N. J. (1984). Approximate IRT formula score and scaled score standard errors of

measurement at different ability levels (Tech. Rep. No. SR-84-118). Princeton, NJ: ETS.

Haberman, S. J. (2007). The information a test provides on an ability parameter (Research Rep.

No. RR-07-18). Princeton, NJ: ETS.

Kolen, M. J., Zeng, L., & Hanson, B. A. (1996). Conditional standard errors of measurement for

scale scores using IRT. Journal of Educational Measurement, 33, 129–140.

9




